جامعة تكريت كلية التربية للبنات قسم الرياضيات

محاضرة بعنوان (مميز الحلقة)

اعداد الأستاذة: م. ندى جاسم محمد

Definition

The inflavoiry Phenoman is perhalted to find the diseasement of a risk wister

exists, then R is said to be characteristic zero. all $a \in R$, then the smallest such positive integer is called the **characteristic of** R, and denoted by **Char**(R). If no such positive integer Let R be a ring. If there exists a positive integer n such that na = 0R for

Examples: Interite order under +2d+3a, then Char(R) = 0

- 1. $Char(\mathbb{Z}) = 0$, $Char(\mathbb{Q}) = 0$, $Char(\mathbb{R}) = 0$, $Char(\mathbb{C}) = 0$
- **3.** If R is a Boolean ring, then Char(R) = 2. Since **2.** Char(\mathbb{Z}_n) = n, since $\forall \overline{x} \in \mathbb{Z}_n$, $n\overline{x} = \overline{0}$.
- $\forall x \in R, x+x=2x=0_R$.

that ring has unity. The following theorem is useful to find the characteristic of a ring when

Theorem

Let R be a ring with unity.

- (i) If $n1_R \neq 0_R$ for all $n \in \mathbb{Z}^+$, then R has characteristic zero.
- characteristic of R. (ii) If $n1_R = 0_R$ for some $n \in \mathbb{Z}^+$, then the smallest such integer n is the

That is;

- (i) if 1_R has infinite order under addition, then Char(R) = 0
- (ii) if 1_R has order n under addition, then Char(R) = n.

Example:

- **1.** Char(\mathbb{Z}) = 0, since we could not find $n \in \mathbb{Z}^+$ such that n1 = 0
- characteristic of $\mathbb{Z}_m \times \mathbb{Z}_n$. **2.** Char($\mathbb{Z}_m \times \mathbb{Z}_n$) = lcm (m, n). Since $\mathbb{Z}_m \times \mathbb{Z}_n$ is a ring with unity $\left(1,1
 ight)$, it is enough to check the order of the unity to find the
- **3.** Char($\mathbb{Z} \times \mathbb{Z}_2$) = 0.

with the following operations + and . defined by: **Example:** Let X be a set and P(X) be its power set. P(X) is a ring

$$A+B := (A \cup B) \setminus (A \cap B)$$

 $A.B := A \cap B$

for $A, B \in P(X)$.

- (P(X),+,.) is a commutative ring with unity.
- The zero element of P(X) is \emptyset .
- The unity of P(X) is X.
- (P(X), +, .) is a Boolean ring, since every element of P(X) is idempotent. Hence, Char(P(X)) = 2

Theorem

The characteristic of an integral domain D is either zero or a prime.

Corollary

The characteristic of a field F is either zero or a prime.

Theorem

The characteristic of a finite ring R divides |R|.

Example: Let F be a field of order 2^n . From the result of the Lagrange Theorem, Char(F) = 2.

the converse is not true. **Remark:** If Char(R) = 0, then the ring has infinitely many elements. But

but the $\mathsf{Char}(P(\mathbb{Z})) = 2$. **Example:** Consider the ring $P(\mathbb{Z})$ which has infinitely many elements,